Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 6(9)2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28837070

RESUMO

The antimicrobial modes of action of six naturally occurring compounds, cinnamon oil, cinnamaldehyde, oregano oil, carvacrol, 2,5-dihydroxybenzaldehyde, and 2-hydroxy-5-methoxybenzaldehyde, previously found to inhibit the growth of Mycobacterium avium subsp. paratuberculosis (Map) reported to infect food animals and humans and to be present in milk, cheese, and meat, were investigated. The incubation of Map cultures in the presence of all six compounds caused phosphate ions to leak into the extracellular environment in a time- and concentration-dependent manner. Cinnamon oil and cinnamaldehyde decreased the intracellular adenosine triphosphate (ATP) concentration of Map cells, whereas oregano oil and carvacrol caused an initial decrease of intracellular ATP concentration that was restored gradually after incubation at 37 °C for 2 h. Neither 2,5-dihydroxybenzaldehyde nor 2-hydroxy-5-methoxybenzaldehyde had a significant effect on intracellular ATP concentration. None of the compounds tested were found to cause leakage of ATP to the extracellular environment. Monolayer studies involving a Langmuir trough apparatus revealed that all anti-Map compounds, especially the essential oil compounds, altered the molecular packing characteristics of phospholipid molecules of model membranes, causing fluidization. The results of the physicochemical model microbial membrane studies suggest that the destruction of the pathogenic bacteria might be associated with the disruption of the bacterial cell membrane.

2.
Molecules ; 19(6): 7497-515, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24914896

RESUMO

Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of the naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde, and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be active against both Gram-positive and Gram-negative pathogenic microorganisms. The lipid monolayers consist of 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-dihexa- decanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), and 1,1',2,2'-tetratetradecanoyl cardiolipin (cardiolipin). Surface pressure-area (π-A) and surface potential-area (Δψ-A) isotherms were measured to monitor changes in the thermodynamic and physical properties of the lipid monolayers. Results of the study indicated that the five compounds modified the three lipid monolayer structures by integrating into the monolayer, forming aggregates of antimicrobial -lipid complexes, reducing the packing effectiveness of the lipids, increasing the membrane fluidity, and altering the total dipole moment in the monolayer membrane model. The interactions of the five antimicrobial compounds with bacterial phospholipids depended on both the structure of the antimicrobials and the composition of the monolayers. The observed experimental results provide insight into the mechanism of the molecular interactions between naturally-occurring antimicrobial compounds and phospholipids of the bacterial cell membrane that govern activities.


Assuntos
Anti-Infecciosos/química , Membranas Artificiais , Fosfolipídeos/química , Acroleína/análogos & derivados , Acroleína/química , Monoterpenos Acíclicos , Benzaldeídos/química , Cimenos , Monoterpenos/química , Propriedades de Superfície , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...